Efficient community detection of network flows for varying Markov times and bipartite networks
نویسندگان
چکیده
Community detection of network flows conventionally assumes one-step dynamics on the links. For sparse networks and interest in large-scale structures, longer timescales may be more appropriate. Oppositely, for large networks and interest in small-scale structures, shorter timescales may be better. However, current methods for analyzing networks at different timescales require expensive and often infeasible network reconstructions. To overcome this problem, we introduce a method that takes advantage of the inner workings of the map equation and evades the reconstruction step. This makes it possible to efficiently analyze large networks at different Markov times with no extra overhead cost. The method also evades the costly unipartite projection for identifying flow modules in bipartite networks.
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملOverlapping Community Detection in Social Networks Based on Stochastic Simulation
Community detection is a task of fundamental importance in social network analysis. Community structures enable us to discover the hidden interactions among the network entities and summarize the network information that can be applied in many applied domains such as bioinformatics, finance, e-commerce and forensic science. There exist a variety of methods for community detection based on diffe...
متن کاملDesign an Efficient Community-based Message Forwarding Method in Mobile Social Networks
Mobile social networks (MSNs) are a special type of Delay tolerant networks (DTNs) in which mobile devices communicate opportunistically to each other. One of the most challenging issues in Mobile Social Networks (MSNs) is to design an efficient message forwarding scheme that has a high performance in terms of delivery ratio, latency and communication cost. There are two different approaches fo...
متن کاملUtilizes the Community Detection for Increase Trust using Multiplex Networks
Today, e-commerce has occupied a large volume of economic exchanges. It is known as one of the most effective business practices. Predicted trust which means trusting an anonymous user is important in online communities. In this paper, the trust was predicted by combining two methods of multiplex network and community detection. In modeling the network in terms of a multiplex network, the relat...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2016